

T6S2

Retrofit, Conversion from Solid to Gas Fuel for Circulating Fluidised Bed Utility Boiler

Jay Richardson - Combustion Engineer Zeeco, Inc.

Overview:

- Circulating Fluidised Bed (CFB) Utility Boiler
- ▶ 550 tph steam at 127 barg and 541°C
- Operating on solid fuel for 1.5 years
- ► Full conversion from Petroleum Coke (Pet Coke)
- Meet NOx requirements and capacity
- Minimal or no impact on waterside

Challenges to Overcome:

- Meet current permit NOx limits 0.07lbs/mmbtu (118 mg/Nm3)
- ▶ No E-FGR (convective impacts).
- Ensure no degradation / derate on steam production.
- Solids return systems cyclone
- Ancillary equipment
- Fluidization system
- Maintain original design ramp rates
- ► Maintain 10-1 turndown of steam flow
- ▶ No design changes on existing water or steam circuit metallurgy

Options:

- Remove Fluidised bed bottom and fire vertically.
 - Removes Coal Firing capability
- 2. Remove Start-Up Burners and Increase Firing Capacity
 - Heat Absorption issues
- Replace Start-Up Burners and add second level of burners to achieve capacity.
 - Ideal Solution
- Performance runs are critical for waterwall protection system (circulation ratio) and reliable steam production post-retrofit.

Option 3:

- Replace 4 Start-Up burners with new burners
- Add second elevation of burners
 - (existing tube panel)
- ~80% of equipment remained available for future pet coke firing
- Complete redesign of combustion air system
- Integration of new redundant BMS and controls logic
- New gas fuel skids
- Refractory removal
- Structural support modifications for new equipment

Fluid Bed Bottom - Refractory to be Removed:

Ultra-Low NOx Free Jet Burners:

- Natural Gas firing
- ▶ 52 MW HHV (capacity)
- Two Fuel Connections for improved turndown/operation
- Exmo auxiliaries and refractory tile for stability
- Steam lance for NOx reduction
 - never commissioned
- Individual windboxes with dampers

Burner Design Theory:

Combustion Air System Redesign:

- Originally airflow is split between bed lances and start up burners
- All airflow redirected to existing and new burner elevation.
- Physical Air Flow Modeling

Physical Air Flow Modeling:

- Plexiglass Model
- ▶ 1/8 Scale

Pressure Coefficient:

C_p= static Pressure/dynamic pressure = 1/[Euler No.]²

- Accurate
- Efficient
- Flexible
- Inexpensive

Physical Air Flow Modeling Cont.:

- ► Airflow Distribution +/-2% to each burner is key.
- Fuel should be "balanced" to each burner
- Flame fit equalized for each burner
- Temperature distribution equalized with firing rate
- System design assistance for balance and pressure drop optimization

Results:

- Unit re-commissioned in less than two weeks.
- <100 mg/Nm3 NOx emissions</p>
 - ▶ No FGR or Steam Injection
- ▶ 550 tph production achieved
- Sister unit conversion the following year (2014)

Questions?

