Estimation of the Air-Demand, Flame Height, and Radiation Load from Low-Profile Flare using ISIS-3D

J.D. Smith, Ph.D. and A. Suo-Ahttila, Ph.D.,
Alion Science and Technology, Owasso, Oklahoma, USA

and

S. Smith and J. Modi
Zeeco Inc., Broken Arrow, Oklahoma, USA
OUTLINE

• Introduction to ISIS-3D and Flare Modeling
• ISIS Model Setup and Methodology
• Low Profile Flare Tests
• Model Validation
• Burner Predictions
 ▪ Air Demand
 ▪ Radiation Load
• Observations and Conclusions
ISIS-3D General Comments

• Based on Computational Fluid Dynamics with radiative heat transfer and combustion chemistry
• Linked model is capable of simulating complex, three-dimensional objects engulfed in fires
• Provide reasonably accurate estimates of the total heat transfer to objects from large fires
• Predict general characteristics of temperature distribution in object
• Accurately assess impact of variety of risk scenarios (wind, % flame coverage, thermal fatigue for given geometry, etc.)
• Reasonable CPU time requirements on “standard” desktop LINUX workstation
ISIS-3D Trade-Offs

• Sacrifice *generality* (large fires only) in favor of *quick turnaround* time and quantitative *accuracy*

• *Reaction rate* and *radiation heat transfer* models apply only to large fires

• Models intended to make ISIS-3D predictions “good-enough” for industrial use
Radiation Inside Large Fires

- High soot volume fractions make large fires non-transparent (optically thick) which causes flame to radiate as a cloud (radiatively diffuse)
- Fire volume defined as where soot volume fraction is greater than a minimum volume fraction ($f_{\text{Soot}} > f_{\text{min}}$)
- Flame edge ($f_{\text{FlameEdge}}$) defined where soot volume fraction is 0.05 ppm - based on comparisons with large fire experiments

Calculated flame surfaces for 3 time steps from ISIS-3D simulation of validation experiment
Radiation Outside of Large Fires

- When \(f_{\text{Soot}} < f_{\text{FlameEdge}} \) => outside “flame” (participating medium considered)

- View factors from fire to un-engulfed surfaces calculated at each time step (include attenuation by flames)

- Radiation view factor from object surface to surroundings calculated at each time step

- \(\varepsilon_{\text{FireSurface}} = 1 \) (fire is black body radiator)

- Radiation from fire surface to surroundings assumes \(T_{\text{surround}} \) = constant
Diffuse Radiation Within Fire

- Calculated indirectly using a Rossland effective thermal conductivity

\[k_R = \frac{16\sigma T^3}{3\beta_R^3} \gg k_{Air} \]

- \(\sigma = \) Stefan-Boltzmann Constant
- \(T = \) local temperature
- \(\beta_R = \) local extinction coefficient. Dependent on local species concentrations
Combustion Model

- Variant of Said et al. (1997) turbulent flame model
- Relevant Species (model includes relevant reactions)
 - F = Fuel Vapor (from evaporation or flare tip)
 - O_2 = Oxygen
 - $PC = H_2O(v) + CO_2$
 - C = Radiating Carbon Soot
 - IS = Non-radiating Intermediate Species
- Eddy dissipation effects and local equivalence ratio effects
- Reactions based on Arrhenius kinetics
 - C and T_A determined for all reactions
Flares in Cross Winds - Modeling Issues

P. Gogolek, CANMET Energy Technology Centre – Ottawa Natural Resources Canada
Low Profile Flares - Modeling Issues

- High tip velocity increases air entrainment
 - Tip design critical to air entrainment
 - Local high velocity can translate into high sound levels

- Assist media not available to increase combustion air
 - Smoke below certain tip pressure (D-stage pressure)

- Tip spacing critical
 - Flares must cross light
 - Possible Flame merge lengthens flames
 - Adjacent rows compete for air (longer flames, poor performance)
Approach to Modeling Full Flare Fields

• Model Single Burner Test
 • Perform Calibration Tests
 • Calibrate Soot Yield and Reaction Parameters for Test Fuel
 • Predict flame shape and size

• Model Multi-Burner Test
 • Perform Radiation Calibration Tests
 • Check Tip/Row Spacing
 • Predict flame shape and size

• Model Full Flare Field
 • Use Calibrated Soot Yield and Radiation Models
 • Predict Flare Performance (Smoke Production/Air Demand)
 • Predict Radiation Load on Wind Fence
Single Tip Burning Propane: wind vs. no-wind

No Wind Condition: Long “pencil-like” flame

8-10 mph Wind Condition: Tilted shorter bushy flame
Modeling Low Profile Flare Test

- Propane injected as mass, momentum and species sources
- Fuel Mol wt – 44 (C_3H_8)
- Tip elevation – 2.0 m (6.5 ft)
- Tip Geometry Provide by Client
- Test Conditions for Propane Mass Flow = 0.46 kg/s (3,651 #/hr)
- Flame height determined by fuel and soot burnout
- Air inflow calculated implicitly from pressure boundary conditions
- Radiation Flux calibrated from measured data at two locations
Single Burner Flare Model

- 6 X 6 X 26 m physical domain
- Flare Tip located 2 m above ground level
- Turbulence and Arrhenius kinetics included for fuel gas
 - Reaction Parameters adjusted to match observed flame characteristics
 - Soot Yield matched flame height (i.e., soot burnout)
- Flare Movies for no wind, 3m/s (7mph) wind conditions
- Predicted results for Air demand and Radiation loss from flame determined
Single-burner Mesh

- Rectangular cells
- Local refinement near burner tip
- 110,000 computational cells
Combustion Models

Propane:

\[
\begin{align*}
C_3H_8 + 3.6 \text{ O}_2 & \rightarrow 3 \text{ CO}_2 + 1.6 \text{ H}_2\text{O} + 0.024 \text{ Soot} + 46 \text{ MJ/kg propane} \\
\text{Soot} + 2.66 \text{ O}_2 & \rightarrow 3.66 \text{ CO}_2 + 32 \text{ MJ/kg Soot}
\end{align*}
\]

Ethylene:

\[
\begin{align*}
C_2H_4 + 0.57 \text{ O}_2 & \rightarrow 0.93 C_2H_2 + 0.64 \text{ H}_2\text{O} + 9.4 \text{ MJ/kg ethylene} \\
C_2H_2 + 2.58 \text{ O}_2 & \rightarrow 2.7 \text{ CO}_2 + 0.7 \text{ H}_2\text{O} + 0.2 \text{ Soot} + 34.1 \text{ MJ/kg intermediate} \\
\text{Soot} + 2.66 \text{ O}_2 & \rightarrow 3.66 \text{ CO}_2 + 32\text{MJ/kg Soot}
\end{align*}
\]

Mixed Gas:

\[
\begin{align*}
0.572 C_2H_4 + 0.383 C_2H_6 + 0.043 \text{ H}_2 + 0.982 \text{ O}_2 & \rightarrow \\
& 0.53 C_2H_2 + 0.34 C_2H_3 + 1.1 \text{ H}_2\text{O} + 14.2 \text{ MJ/kg} \\
0.61 C_2H_2 + 0.39 C_2H_3 + 2.66 \text{ O}_2 & \rightarrow \\
& 2.66 \text{ CO}_2 + 0.813 \text{ H}_2\text{O} + 0.181 \text{ Soot} + 34.4 \text{ MJ/kg} \\
\text{Soot} + 2.66 \text{ O}_2 & \rightarrow 3.66 \text{ CO}_2 + 32 \text{ MJ/kg}
\end{align*}
\]
Flame: No Wind (top) and 3.0 m/s Wind (bottom)

No wind produces tight “pencil-like” flame
Flame: No Wind (top) and 3.0 m/s Wind (bottom)

Wind produces tilted bushy, shortened flame
Predicted flame length for no-wind condition

0.05 ppm Soot Iso-surface used to represent Flame volume – surface colored by gas temperature

Flare tip located 2 m (~7 ft) above grade

Isosurface temps: 1.7e+03 to 1e+03
Single-Tip Ground Flare Test Results

- No Wind Condition (<1 mph wind)
- Ave Flame Length = 14.8 - 16.3 m (48 - 53 ft)
- “Pencil-like” tight flame
- Small non-luminous flame at base
- Propane Flow rate: measured 1.4” WC @ 57 °F across orifice plate => 7.3 psig tip back pressure (measured on 18 inch pipe run)
Single-Tip Ground Flare Test Results

- 1.4” WC @ 57 °F => 7.3 psig tip pressure
- 12-16 Km/hr (8-10 mph) crosswind
- ~30% flame height reduction
- Minimum flame tilt (~8°)

Measured flame length w/ wind

~8-10° flame tilt

10.5 m (34 ft)
Model Used to Predict Flare Air Demand

- Based upon total mass flow through a 3.6 m square plane located 20 m height above flare
- Predicted flame height is 17 m above ground (15 m flame length)
- Predicted 60 kg/sec air demand by flame
- Total air inflow through all walls around computational domain is 100 kg/sec
Predicted Air Demand vs. Time
Model Used to Predict Flame Radiation Loss

- Radiation Depends upon Soot, CO₂, H₂O Concentration in Flame and Flame Size
- Soot yield from hydrocarbon assumed constant for propane
- Predicted approx 3 MW radiation loss from 22 MW Flame or 13.6% heat loss
Predicted Flame Energy Balance

Reaction and Radiative Loss

Chemical Reaction Energy

Radiative Loss

Power Level (KW)

Time (s)
Three-burner Mesh

- Rectangular cells
- Domain size is 30 m X 35 m X 25 m
- Local refinement near burner tips and radiation meters
- 188,000 computational cells
Predicted 3-burner flare with radiation monitors
Predicted Flame Height for 3-burner test

\[\sim 16 \text{ m (52 ft)}\]

\[12 \text{ m (39 ft)}\]
Predicted Flame Height for 3-burner test
3-burner Flare Test with Ethylene (no wind)

- Flame height ~11 m (~36’)
- Non-luminous region ~1 m (3’)
- Tip Height ~3 m (10’)

American – Japanese Flame Research Committees International Symposium
Advances in Combustion Technology: Improving the Environment and Energy Efficiency
Predicted Radiation from 3-Burner Flare after Modifications to Account for Ground and Atmospheric Attenuation Effects

Radiation Issues Accounted for in Prediction:

1. Ground re-radiating and reflecting incident radiation from flame to meters
 - Assumed ground $e = a = 1$; allow ground to heat to steady state temperature

2. Atmospheric attenuation of radiation from flame to meters
 - Model uses ambient/source temperatures with H_2O/CO_2 absorption

<table>
<thead>
<tr>
<th>WALL (from plan view perspective)</th>
<th>Left Wall ISIS-3D Output* W/m²</th>
<th>Right Wall ISIS-3D Output W/m²</th>
<th>Bottom Wall ISIS-3D Output W/m²</th>
<th>Flame Optical Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEAK FLOW</td>
<td>78,000</td>
<td>63,000</td>
<td>108,000</td>
<td>0.275</td>
</tr>
<tr>
<td>Initial Radiation Radiation Modification</td>
<td>61,000</td>
<td>35,000</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>SUSTAINED FLOW</td>
<td>15,000</td>
<td>15,000</td>
<td>35,000</td>
<td>0.28</td>
</tr>
<tr>
<td>Initial Radiation Radiation Modification</td>
<td>6,600</td>
<td>6,600</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>
3-Burner Flare Radiation Predictions Compared to Experimental Data

<table>
<thead>
<tr>
<th>Tip Size</th>
<th>Position (m)</th>
<th>Burner Pressure (psi)</th>
<th>Total Predicted Radiation (W/m²)</th>
<th>Measured Radiation (W/m²)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15</td>
<td>2.8</td>
<td>2700</td>
<td>3344</td>
<td>-20.0 %</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>7.3</td>
<td>4750</td>
<td>4803</td>
<td>-1.0 %</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>11.4</td>
<td>6150</td>
<td>6192</td>
<td>-0.7 %</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>2.8</td>
<td>650</td>
<td>671</td>
<td>-3.0 %</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>7.3</td>
<td>1350</td>
<td>1184</td>
<td>+14.0 %</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>11.4</td>
<td>1650</td>
<td>1532</td>
<td>+8.0 %</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>2.8</td>
<td>4325</td>
<td>6371</td>
<td>-32.0 %</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>7.3</td>
<td>8050</td>
<td>8192</td>
<td>-2.0 %</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>11.4</td>
<td>10000</td>
<td>9536</td>
<td>+5.0 %</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>2.8</td>
<td>1150</td>
<td>1513</td>
<td>-23.0 %</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>7.3</td>
<td>2580</td>
<td>2464</td>
<td>+5.0 %</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>11.4</td>
<td>3250</td>
<td>2747</td>
<td>+18.0 %</td>
</tr>
</tbody>
</table>
Wind Effect on Radiative Flux from 3-burner C$_2$H$_4$ flare at 15 m
Full Field Flare Grid

- Domain size is 10 m beyond wind fence and 25 m high.
- Local refinement near burner rows/tips.
- 700,000 (Sustained Flow).
- 1,200,000 (Peak Flow).
[C$_2$H$_4$] Iso-surface for 1/4 Symmetry Peak Flow-no wind condition

Predicted flames well below total fence height
Max $[\text{C}_2\text{H}_4]$ along line of sight for peak flow case

Side view along row showing flame elongation toward center of row

End view of flame height for each row and impact of inflow on outer rows
Summary of all Air/Fuel Requirements for “no-wind” conditions

<table>
<thead>
<tr>
<th>Case Description</th>
<th>Evaluation Plane Area (m²)</th>
<th>Total Air Flow (kg/s)</th>
<th>Fuel Flow (kg/s)</th>
<th>Air/Fuel Mass Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Burner Propane</td>
<td>14.63</td>
<td>60</td>
<td>0.46</td>
<td>130</td>
</tr>
<tr>
<td>1 Burner (Tip 3) Ethylene</td>
<td>13.26</td>
<td>52</td>
<td>0.94</td>
<td>55</td>
</tr>
<tr>
<td>3 Burner (Tip 3 - 7.3PSI) Ethylene</td>
<td>36</td>
<td>134</td>
<td>2.88</td>
<td>47</td>
</tr>
<tr>
<td>3 Burner (Tip 3 - 11.4PSI) Ethylene</td>
<td>36</td>
<td>144</td>
<td>3.84</td>
<td>38</td>
</tr>
<tr>
<td>3 Burner (Tip 4 - 7.3PSI) Ethylene</td>
<td>36</td>
<td>150</td>
<td>4.26</td>
<td>35</td>
</tr>
<tr>
<td>3 Burner (Tip 4 - 11.4PSI) Ethylene</td>
<td>36</td>
<td>160</td>
<td>5.79</td>
<td>28</td>
</tr>
<tr>
<td>Full Field Peak Flow Ethylene</td>
<td>3226</td>
<td>9700</td>
<td>262.3</td>
<td>37</td>
</tr>
<tr>
<td>Full Field Sustained Flow Mixed Gas</td>
<td>1843</td>
<td>4800</td>
<td>93.6</td>
<td>51.3</td>
</tr>
</tbody>
</table>
Conclusions

- **ISIS-3D Model:**
 - Single-burner model used 110,000 cells
 - Three-burner model used 188,000 cells
 - Full-field model used 700,000 cells (Sustained Flow);
 - 1,200,000 cell (Peak Flow)
 - Combustion chemistry for propane, ethylene, mixed gas
- Modeled flame shape/size for 3 fuels for single and three burner tests
- Predictions compared to data from 12 tests (2 tip sizes, 3 operating pressures, 2 radiation sample locations)
- Predicted “reasonable” estimates of radiation heat transfer and air demand for low profile flare
 - Air/fuel ratios range from 28 to 47 for 3-burner test and from 37 (Peak Flow Case) to 51 (Sustained Flow Case)
- Calibrated flare model applied to full-flare field to estimate:
 - Air demand for specified tip/row spacing
 - Radiation load on wind fence for nominal and peak flow cases
 - Expected flame height and smoke production for nominal and peak flow cases