New Direct Flame Monitoring Technology to Help Operators Comply with Increasingly Stringent Flaring Regulations

J. Matt Miskelly
Applications Engineer
Zeeco, Inc.
General Definition of Flare Systems

- Merriam-Webster Definition:
 - A fire or blaze of light used especially to signal, illuminate, or attract attention

- API-527/537 Definition:
 - A device or system used to safely dispose of relief gases from a process in an environmentally compliant manner through the use of combustion
Flare Use Advantages

- Used to eliminate an overpressure in a process using combustion
- Relatively inexpensive to operate and is always online
- Safe & reliable form of protection for plant personnel and surrounding community
Flare Perceived Disadvantages

- Customers often worry about producing one or any of the following:
 - Smoking
 - Noise
 - Visible Flame
 - Odors

- Aside from these, there is a growing concern for more regulation on “invisible pollutants”, or in short…
Emissions Regulation Overview

- Historical Background:
 - US Environmental Protection Agency (EPA)

- 1986: EPA broadcast emission standard for flare under NSPS Subpart A (40CFR § 60.18), amended 1998 and 2000
 - No visible emissions – determined by EPA method 22
 - Presence of pilot flame
 - Vent gas NHV must meet specified criteria
 - Flare tip velocity must be less than 60 ft/s or as defined by formulas
Future Emissions Regulation

- December 2015: EPA broadcast new emissions standards for flare under NESHAP Subpart CC (40CFR § 63.670)
 - Effective Date: 2/1/2016
 - Compliance Deadline: 1/30/2019
 - Most significant changes:
 - Continuous monitoring required
 - Change from vent gas NHV to CZNHV
 - Data point required every 15 minutes
Monitoring Flare Performance with Video Imaging Spectro-Radiometer (VISR)
VISR Presentation Outline

- Introduction to VISR
- Validation of the VISR method
- Capabilities
- Applications
VISR Presentation Outline

- Introduction to VISR
- Validation of the VISR method
- Capabilities
- Applications
VISR Presentation Outline

- Introduction to VISR
- Validation of the VISR method
- Capabilities
- Applications
VISR Presentation Outline

- Introduction to VISR
- Validation of the VISR method
- Capabilities
- Applications
VISR Presentation Outline

- Introduction to VISR
- Validation of the VISR method
- Capabilities
- Applications
Introduction to VISR

- The term “VISR” is used for both:
 - The Method – Video Imaging Spectro-Radiometry
 - The Device – Video Imaging Spectro-Radiometer

- FlareGuardian™ is a VISR based product produced by Zeeco, Inc. for flare monitoring
Introduction to VISR

- Multi-spectral imager
- Directly measures relative concentrations of combustion products and unburned hydrocarbons (HC) in the flame
- Calculates flare combustion efficiency (CE) directly in real time
- Eliminates uncertainty in using surrogate parameters (CZNHV and tip velocity)
Introduction to VISR

VISR is different from other direct flare measurement methods

- **Extractive**
- **PFTIR**
- **VISR**

VISR
- 3-D measurement (3-D flame is reduced to a 2-D image)
- Suitable for autonomous monitoring or short-term study

Extractive Sampling
- Point measurement
- Not suitable for routine monitoring

PFTIR
- Path measurement (the path is reduced to a point)
- Not suitable for routine monitoring
Validation of the VISR Method

- Validated using extractive method
 - 28 test runs were compared
 - Average difference was 0.50% in CE
 - The difference was smaller (-0.30% in CE) when CE was > 80%
For More Details

- U.S. patent No. 9,258,495 issued on Feb. 9, 2016
- Validation test results can be found in *Journal of Air and Waste Management Association*, January issue of 2016, pp. 76-86
- The development of VISR was partially funded by U.S. EPA thru its SBIR Phase I and Phase II awards
VISR Capabilities

- Remotely, continuously, and autonomously monitor the following metrics:
 - **Combustion Efficiency (CE):** 0-100%
 - **Smoke Index (SI):** 0-10 for the level of smoke
 - **Flame Stability (FS):** 0.1-1 (0.1=extremely unstable flame; 1=extremely stable flame)
 - **Flame Footprint (FF):** flame cross section area ⊥ to VISR line of sight; shown as SQFT
 - **Heat Release (HR):** Amount of heat released by flare in the mid-wave infrared (MWIR) region, expressed as Btu/min

- Default time resolution: 1-sec, 1-min, and 15-min average

- The data can be sent to DCS / PLC for display or closed-loop control of flare
What Can You See Through the Lens of VISR?

Case 1: Higher CE, no visible emissions

Case 2: High CE, some visible emissions

Case 3: Low CE due to over-steaming
VISR vs. Visible Imagery

Green: Hydrocarbon
Red: CO2
Bluish/white: Carbon particles or hot solid objects
Case 1: High CE, No Visible Emission

CE measured by VISR: 99.8%

CE measured by extractive sampling: 99.9% w/ SD of 0.4%
Case 1: Progression of Good Combustion

Ex. A parcel of fuel gas is combusted in about 0.47 sec. (14 frames)

Green: Hydrocarbon
Red: CO2
Case 2: High CE, some visible emissions

SI = 3.15, indicating smoke

CE measured by extractive sampling: 99.9% w/ SD of 0.8%
Case 3: Low CE due to over-steaming

CE measured by VISR: 56.6%

CE measured by extractive sampling: 62.0% w/ SD of 19.2%
Case 3 (Cont’d): Low CE Condition

Very unstable flame; FS = 0.29; Flare is pulsing

Cycle time
~ 0.5 sec.
Case 3 (Cont’d): Over-steaming Frame-by-frame

Flare pulsation behavior occurs in the following manner:

Green: Hydrocarbon
Red: CO2
Bluish/white: Carbon particles or hot solid object

Significant amount of unburned hydrocarbon (green color). Too cold to continue combustion.

0.033 sec.
Detecting Pilot Flame

Pilot flames are readily identifiable

Pilots
➢ Blue portion: metal pilot hood
➢ Red portion: pilot flame

Monitor presence of pilot flame - EPA rule 40 CFR §63.670 (b)
✓ It's based on pilot flame, not temp.
✓ Remote monitoring – easy to maintain

Green: Hydrocarbon
Red: CO2
Bluish/white: Carbon particles or hot solid object
Summary of VISR Capabilities

For flare monitoring
- CE (Combustion Efficiency)
- SI (Smoke Index)
- FS (Flame Stability)
- FF (Flare Footprint) can provide flame length
- HR (Heat Release)
 Potentially estimate mass rate
- Monitor pilot flame

For flare studies, same dashboard as above, plus:
- Ability to look into flare with unprecedented spatial and temporal resolution
- Tool for design/research (validating CFD modeling)
- Troubleshooting of existing flare
Summary of VISR Capabilities

<table>
<thead>
<tr>
<th>EPA Rule 40 CFR, Part 63</th>
<th>Compliance Requirements</th>
<th>Covered by FlareGuardian?</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 63.670 (b)</td>
<td>Presence of Pilot Flame</td>
<td>✓</td>
</tr>
<tr>
<td>§ 63.670 (c)</td>
<td>No Visible Emissions</td>
<td>✓</td>
</tr>
<tr>
<td>§ 63.670 (d)</td>
<td>The three requirements are design to ensure sufficient CE through surrogate parameters</td>
<td>✓</td>
</tr>
<tr>
<td>§ 63.670 (e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>§ 63.670 (f)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fixed Installation – Closed Loop Operations

- Flare System
- FlareGuardian™
 - Real-time data output for CE and SI
 - Video output
- DCS or PLC
- Operator
- Supplemental Fuel
- Waste Gas
- Steam/Air
Indirect/Surrogate Method vs. FlareGuardian

Conventional, indirect/surrogate method:
- Instruments require direct contact with streams.

FlareGuardian™:
- Directly and remotely measure CE.
- Remote sensing:
 - No contact with streams.
 - Installation will be simple, no need for process interruption or waiting for turnaround.
- Optimized coverage for flare system.
Benefits of FlareGuardian

- Integral part of flare instrumentation and control
- Flare dashboard – Real time continuous performance data changes the way you operate flares
- Direct CE monitoring – avoid over- or under-regulating with the surrogate based indirect method
- Closed-Loop Control of Flare
Benefits of FlareGuardian (Con’d)

- Less expensive than GC & Calorimeter based regulatory methods
- Fast response (one second data resolution vs. 8-12 minute data resolution for GC), minimizing deviations in the 15-min regulatory compliance period
- Supplemental fuel savings
- Remote sensing
 - Installation / maintenance can be scheduled independent of processes
 - No need to interrupt process for installation or maintenance
 - No contact with potentially corrosive process streams – low maintenance
Questions?