Best Practices for Using Flares to Meet Proposed EPA Emissions Regulations for Hydraulically Fractured Natural Gas or Oil Wells

Scott D. Reed, Vice President, Zeeco
On April 17, 2012, the US EPA released final ruling for the first federal air standards for oil and natural gas production

- National Emission Standards and Hazardous Air Pollutants (NESHAP, 40 CFR Part 63 subpart HH & HHH) directly impacts the oil and gas production and natural gas transmission and storage facilities. Revised rule, applies to existing and new affected facilities.

- www.epa.gov/airquality/oilandgas
The new ruling targets five source categories of oil and gas production:

NATCS Code
- 211111- Crude Petroleum and Natural Gas Extraction
- 211112- Natural Gas Liquid Extraction
- 221210- Natural Gas Distribution
- 486110- Pipeline Distribution of Crude Oil
- 486210- Pipeline Transportation of Natural Gas

- Expected to yield a 95% reduction in VOC’s. VOC’s in presence of sunlight creates ground level ozone (smog) which has detrimental health impact.

- Expected to address methane releases from oil and gas production and processing. US largest single methane source, approximately 40% of all US release. Methane is also some 20x more detrimental as greenhouse gas, than CO2.
Natural gas systems encompass wells, gas gathering and processing facilities, storage, and transmission and distribution pipelines.

Production & Processing
1. Drilling and Well Completion
2. Producing Wells
3. Gathering Lines
4. Gathering and Boosting Stations
5. Gas Processing Plant

Natural Gas Transmission & Storage
6. Transmission Compressor Stations
7. Transmission Pipeline
8. Underground Storage

Distribution
9. Distribution Mains
10. Regulators and Meters for:
 a. City Gate
 b. Large Volume Customers
 c. Residential Customers
 d. Commercial Customer

Crude Oil to Refineries (not covered by these rules)

The Natural Gas Production Process Diagram adapted from the American Gas Association and the EPA Natural Gas STAR Program
EPA Regulations Affecting Upstream Operations

Standards for Natural Gas Well Operations at the Well Site

• Affects newly hydraulically fractured or refractured natural gas wells drilled after August 23, 2011

• NSPS require 95% VOC reduction during flowback well completion activities

• Phase 1 requires flaring (completion capture devise, CCD) or capture of gases. Phase 2 requires Reduced Emission Completion (REC), also known as Green Completion, and is not in affect until January 1, 2015 (with exceptions).
Standards for Natural Gas Well Operations at the Well Site, Continued

• A Completion Combustion Device (CCD) otherwise known as flare, requires reliable pilot and ignition source over the duration of the flowback period (typically 3-10 days) and must meet 95% VOC reduction.

• Properly designed engineered flare system can achieve greater than 98% VOC reduction.

• Engineered flare system design, with either open or enclosed flames, that are portable can increase flexibility to address multiple well sites without any foundation requirement and allow for management of multiple well sites.
Several different potential PFD design options, depending on well site
Standards for Storage Tanks

- Includes storage tanks located at well site, gathering & boosting stations, NG processing facilities and compressor stations

- Targets sites with VOC emissions level of six tons per year or more

- Have until October 15, 2013 to install necessary controls.

- NSPS requires 95% VOC reduction

- Properly designed engineered flare will achieve 98% VOC reduction
Well site flare options – Open flame

- Engineered flare system design
- High pressure vents off separator
- Low pressure vents off the tanks
- Combination flare for both streams
Well site flare options – Enclosed flame

- High pressure vents off separator
- Low pressure vents off the tanks
- Combination flare for both streams
- Properly designed engineered enclosed flare will provide for greater than 98% VOC reduction
Standards for Glycol Dehydrators

- Includes units located at well site, gathering & boosting stations, NG processing facilities and compressor stations

- Subject to NESHAP, large units must meet same existing standards (less than 1 tpy benzene compliance option, as opposed to 95% reduction control).
Standards for Glycol Dehydrators

- New standards apply for small units at major sources (10 tpy single HAP or 25 tpy combination of HAPs). Required to meet unit specific BTEX limit via formula set forth in final rule, 40 CFR 63.765 (b)(1)(iii).

- Compliance for new units is required upon startup, units constructed after August 23, 2011 have 3 years

- Properly designed engineered flare will provide 98% emission reduction.
Glycol Dehydrator vent flare

• A 95% reduction in VOC is now required by NSPS.

• This emissions reduction can be easily achieved through the use of a properly designed engineered flare system to achieve minimum 98% reduction.
Standards for Centrifugal Compressors

• Includes units located at gathering & boosting stations, NG processing facilities

• NSPS for new or modified compressors with wet seal systems require 95% VOC reduction.

• Compliance is required at initial startup or 60 days after rule published in Federal Register, whichever is later.

• Properly designed engineered flare will achieve 98% VOC reduction.
Compressor Station Flares

• Limits storage tanks at compressor station facilities to a VOC emissions level of six tons per year.

• Storage tanks have one year or until October 15, 2013 to install necessary controls.

• Glycol dehydration vent flares may be required in addition to storage tank flares.
Forthcoming EPA regulations will likely require additional controls if assist media is being utilized for smokeless operation, typically steam or low pressure air blowers, to reduce excessive VOC emissions. (CZNHV)

Affected facility operators need to remain aware of both the already published new and the likely upcoming regulations and consider potential engineered flare system design that would meet requirements for new facilities.
Engineered Flare System Design

- Critical to get it right the first time, no field development, proven field design
- Durable materials of construction (MOC), refinery grade robust design, suitable for unmanned field applications
- Environmentally compliant design, knowledge of regulations present and forthcoming
• Key flare components utilize investment casting MOC for safe, stable, long life in the critical heat effected zones.

• Design for installation in remote operations and monitoring, as required to meet standards

• Combination HP / LP design to optimize performance and cost
Engineered Flare System Design

- Pilot design per API 537, tested to industry standards to ensure flare will meet environmental performance requirements.

- Stable flame in minimum wind speeds of 150 mph with 10 inches of rain / hour

- Ability to reignite automatically without operator interface or electric power

- Ability to monitor for the presence of a flame and record for environmental records verification
Engineered Flare System Design

- Local service and support capabilities for installation, start up, operator training.
- Resources to manage multiple temporary flare applications
- Engineering support for optimizing flare system design for the affected facility
Using Engineered Flares to meet new regulations

- Well site flare systems
- Gathering and Booster Stations flare systems
- Natural Gas Processing plant flare systems
- Compressor Station flare systems

Properly designed engineered flare for either open or enclosed flame will provide for greater than 98% VOC reduction
Acknowledgements / Thank You / Questions

One-Column Format